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ABSTRACT
Manufacturers launch new product models at various time

increments to meet changing market requirements over time.
At each design period, product design and price may change.
While price decisions can be made at product launching time,
redesign decisions must be made in advance. Real options the-
ory addresses such time gap decisions. This paper presents a
real options approach with a binomial lattice model to determine
optimal design and price decisions for hybrid electric vehicles
(HEVs) that maximize expanded net present value of profit un-
der gas price uncertainty over time. Results confirm that we can
obtain changing vehicle attributes by changing gear ratios rather
than the architectures themselves due to high cost of redesigning.
A parametric study examines the impact of gas price volatility
on option decisions and shows that larger volatility of gas price
causes the change option to be selected more frequently.

NOMENCLATURE
X(t) Design at time t
P (t) Price of a new design at time t
P

′(t) Price of the current design at time t
V (t) Profit at time t
PV (t) Present value of profit at time t
I(0) Initial investment
NPV (0) Net present value of whole design project
nti i-th node at time t

∗Address all correspondence to this author.

p Probability of gas price being increasing
u Proportional increase in gas price
d Proportional decrease in gas price
σ Volatility of gas price
G Initial gas price
r Risk-free interest rate
C Redesign cost
ρ Planetary gear ratio
FR Final drive ratio

1 Introduction
Product planning is affected by uncertainty in future mar-

ket environments. Successful current designs may not succeed in
the future due to market changes. For example, in the automotive
market, customer preferences on vehicles are affected by external
factors such as gas prices, government subsidies and taxes, and
infrastructures. This study focuses on gas price changes. Market
data shows that there is a positive correlation between gas prices
and fuel efficiency in the market [1], i.e., customers may look for
better MPG vehicles when gas prices are high. This assumption
is validated by the consumer surveys in Section 3.1. Automo-
bile manufacturers must develop new or modified vehicle models
over time to meet such changing market needs.

When making design decisions for future product models,
producers must decide whether and how to change the current
product model and invest in new development at the present. In
the real options investment strategies developed in finance, the
decision maker does not commit to decisions in advance. Instead,
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the decision maker waits until uncertainty (or risk) is reduced (or
“hedged”) and commits to a decision at subsequent periods using
the latest market information. Several studies have applied real
options ideas to engineering design [2–10].

Design decisions differ from financial decisions such as set-
ting a price, in that they cannot be implemented immediately.
Cardin et al. [8] have accounted for a time lag between the time
the decision to exercise the flexibility is made and the time this
flexibility is actually operational. This is often referred as “time
to build”. In the automotive industry, the time between initial
planning and production is at least two years [11]. Thus, vehicle
model decisions must be made at least two years in advance of
the expected sale time. Redesign cost can be high, especially in
the automotive industry, making it difficult to change models fre-
quently, as a new model’s cost may exceed the additional profit
it brings.

This paper presents an optimization model using a real op-
tions approach for product design, including time and cost con-
siderations for redesigning future models under uncertain market
conditions. The specific product implementation is the design of
a plug-in hybrid electric vehicle (PHEV) powertrain architecture
for a given time horizon under gas price uncertainty. This study
focuses on powertrain design because the powertrain system has
the largest impact on fuel economy and vehicle performance, al-
though other systems can contribute. Powertrain architecture in a
PHEV is the connection arrangement of powertrain components
through planetary gears. Figure 1 shows the powertrain architec-
ture of the Toyota Prius as an example where an engine and two
motor/generators (MG) are connected through a planetary gear
(PG) system to drive a vehicle output shaft. Design alternatives
with different fuel economy and vehicle performance results can
be created by changing this connection arrangement and the cor-
responding gear ratios. Previous work has shown that desirable
vehicle attributes and duty cycles affect the choice of architec-
ture [12].

The paper is organized as follows. Section 2 reviews rele-
vant literature. Section 3 introduces the proposed decision mak-
ing framework and model for PHEV architectures. Section 4
presents and discusses the optimization results. Section 5 con-
cludes with limitations.

2 Related Work
The section presents a brief discussion of previous work in

real options for design and in HEV architecture optimization.

2.1 Real options in design
In investment decision making, discounted cash flow (DCF)

evaluates net present value (NPV) of projects and is used to eval-
uate potential investments. However, traditional DCF underesti-
mates the value of having flexibility of decisions (option values)

FIGURE 1. Connection arrangement in the Toyota Prius architecture.
“R”, “C” and “S” denote the ring, carrier and sun gears, respectively.
“MG” denotes motor/generator and “FD” denotes the final drive.

and the real options approach was introduced to address this lim-
itation of DCF [13, 14]. An option is the right (without being an
obligation) to take action depending on the realization of future
market environments. In general, there are five types of options:
Deferment, abandonment, expansion, contraction, and switching
options [14]. In real options, the Expanded Net Present Value
(ENPV) is introduced by adding Real Option Values (ROV) to
NPV: ENPV = NPV + ROV. The investor will choose to invest
if ENPV is positive. So, even if NPV is negative, high ROV can
result in an investment. ROV is obtained from the value of flexi-
bility of decisions in each stage.

There are three widely-used methods to compute ROV:
Black-Scholes model [15], binomial lattice model [16], and
Monte Carlo simulation method [17]. The Black-Scholes model
is representative of continuous time-based models, while the
binomial lattice model is representative of discrete time-based
models. The Black-Scholes model can yield a closed-form solu-
tion and was introduced in finance. The binomial lattice model
provides an intuitive interpretation of results and is applicable to
various options. It assumes that the value of an asset can change
in one of only two directions over time, i.e. increase or decrease,
so that the probability follows a binomial distribution. All possi-
ble market scenarios and associated probabilities are represented
by a tree structure. Option values in the tree structure are calcu-
lated from the end nodes to the starting node in reverse through
a backward induction process. When a time unit of minutes is
used for the binomial lattice model, the result converges to that
of the Black-Scholes model [18]. However, this model is sen-
sitive to parameter inputs. The Monte Carlo (MC) simulation
method randomly generates different scenarios and computes a
profit distribution. The MC method computes option values from
the initial time in chronological order in contrast to the binomial
lattice model. This method is useful when it is difficult to define
parameters for the Black-Scholes and binomial lattice models.

Real options have been used in a design context to value
flexibility [19], and as a tool that can be used not “on” but
“in” design projects [4]. Zhao and Tseng showed that valuing
flexibility is important for infrastructure design such as parking
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garages [2]. Kalligeros and de Weck evaluated the value of flexi-
bility in modularized office building design considering the con-
traction option of an office complex [3]. Silver and de Weck
introduced the “Time-Expanded Decision Networks” to analyze
the effect of lock-in and flexibility in space launch system design
considering switching cost in choosing launch vehicle configu-
rations [5]. Dong et al simulated a real options approach using
the merge, substitute, and reject options for modules in modu-
lar product design, and randomly generated data sets rather than
actual data [6]. Cardin and Hu designed a waste-to-energy sys-
tem by using MC simulations [10]. They formulated and com-
pared three methods: Inflexible decision making in determinis-
tic markets, inflexible decision making in uncertain markets, and
flexible decision making under uncertain markets, focusing on
designing system flexibility early on, so that it can be exercised
in operations within a short deployment time. Time lag was not
modelled.

The extant literature generally treats price under uncertainty
without addressing the time lag between price and design deci-
sion options. Most applications use MC simulations as the so-
lution strategy, evaluating hundreds or thousands of random sce-
narios. While some models run within fractions of seconds, such
as the examples in [7] and [10], MC simulations generally are
not computationally tractable when using high fidelity engineer-
ing simulation models due to high computational cost [9]. In
the present study we use the binomial lattice model as the most
fitting to the problem.

2.2 Architecture design
Vehicle powertrain architecture design has been studied for

both gasoline and hybrid electric vehicles (HEV). An example
of the powetrain architecture design problem for gasoline vehi-
cles with automatic transmissions is finding the optimal connec-
tivity arrangement among powertrain components (internal com-
bustion engine, planetary gears and vehicle output shaft), and the
placement of clutches in the arrangement to obtain a desired set
of gear ratios. Methods based on canonical graph representa-
tions have been used to enumerate all possible 4-speed [20] and
6-speed [21] automatic transmissions.

The powertrain architecture design problem for HEVs is
more challenging than that for gasoline vehicles due to the vari-
ety of architecture alternatives and the additional need to account
for the control strategy that manages power demand and supply
for the engine and motor/generators (MG). There are three main
classes of architectures for HEVs, namely, series, parallel and
power-split architectures. Munzer and Shea studied the selection
of an appropriate architecture among these options for a given
vehicle application assuming a simple control strategy [22]. Liu
and Peng [23], and Bayrak et al. [24] integrated optimal con-
trol strategies for power-split architectures since these offer the
largest variety of alternatives. Using an architecture representa-

tion with a dynamic system matrix or bond graphs, respectively,
these approaches generate all possible architecture alternatives
and select candidates based on engineering performance metrics
such as fuel economy, vehicle acceleration, or top speed. More
generalized approaches add the design of gear ratios to the archi-
tecture design and control problem and solve the coupled prob-
lems together [12, 25, 26].

These previous studies focused only on optimizing the en-
gineering performance of architectures. In the present study the
optimization model is expanded to include a business perspective
that accounts for future model offerings under under gas price
uncertainty. The architecture representation and optimization so-
lution approach used in this study follows closely that of [12,26].

3 Problem Formulation
In the proposed problem formulation there are two decisions

available, design and price. To launch new product models se-
quentially over time, the decision maker has an option to stay
with a current design and price or change them. Since redesign-
ing a product takes time (e.g., a few years in new vehicle de-
velopment), a decision on design should be made in advance de-
pending on the new product development time frame, while price
decisions can be made at the time of product launch.

A general process of computing NPV based on the decided
design and price is shown in Figure 2, where t indicates time,
X(t) indicates a particular design (i.e., a vector including design
variables), P (t) indicates price of product, V (t) indicates profit,
and PV (t) is the present value of profit at time t. I(0) is the
amount of initial investment, and NPV (0) is NPV of whole de-
sign project. At t = 0, a manufacturer must decide on product
design, X(1), to launch at t = 1 while the price decision P (1),
for this product X(1), is made at t = 1, i.e., right before launch-
ing the product. At the same time (t = 1), a manufacturer should
begin redesigning product X(2) to launch at t = 2. If we use
the traditional DCF method, all designs and prices will be the
same: X(1) = X(2) = X(3) = X(4)...; P (1) = P (2) = P (3)...,
because traditional DCF does not allow design flexibility over
time.

In this study, we employ real options for a PHEV design
problem. The design decision vector X consists of powertrain
architecture (see Figure 1) and corresponding gear ratios. Fol-
lowing the study presented in [26], we model PHEV powertrain
architectures using a graphical representation (based on bond
graphs) that defines the connections among powertrain compo-
nents through planetary gears denoted by xc, planetary gear ra-
tios denoted by � and final drive ratio denoted by FR. Using
that representation, we extract a quasi-static 2× 2 kinematic ma-
trix denoted by Cconf that defines the speed and torque relation-
ships among an engine, two motor/generators (MGs) and vehicle
output shaft to simulate the vehicle attributes such as range and
vehicle performance including 0 to 60 miles per hour (mph) time
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FIGURE 2. Time-series decision making

and top speed. We explain details of how these representations
are used in the engineering model in Section 3.3.

Gas price is used to represent market uncertainty, where gas
price volatility over time affects consumer demand. We dis-
cretize the time horizon in 2-year steps assuming that we re-
design and launch a new product model every 2 years. Based on
this setting, the binomial lattice model can be applied as shown in
Figure 3. The paths in traditional binomial lattice model should
be recombined. For example, nodes n(2)2 and n(2)3 should be the
same node under the traditional binomial lattice model. How-
ever, the proposed model differs from the traditional model. It
consists of three steps: (1) The gas price change is estimated
by using recombinant paths like the traditional model as shown
in Figure 4. (2) Consumer preferences are estimated for each
gas price node. (3) Then, the product design decision is made
by the binomial lattice model without recombining, because a
product design is dependent on the previous design as shown in
Figure 3. Note that a multinomial lattice methodology [27] can
also be used considering multiple gas change scenarios.

In the engineering design problem at hand we do not fol-
low the path independence assumption of the traditional binomial
lattice model (i.e., a value is independent of the path followed,
whether up-down, or down-up in a simple two stage sequence),
because of the high redesign cost.

In this figure, nti indicates the ith node at time t. p and 1− p
indicate the probabilities of gas price being increasing and de-
creasing, respectively. Depending on these two scenarios, price
and design decisions are made at subsequent periods. At t = 1
we have two nodes where the decision maker decides on two sep-
arate optimal prices, P (1)

1 and P (1)
2 , for the same design X(1),

corresponding to each scenario. This design decision was made
at the previous time stage, t = 0. The design option is whether to
launch the design X(1) or abandon it. In addition, a new design
X

(2)
1 for the increasing gas price scenario and another new design

X
(2)
2 for the decreasing gas price scenario should be made.

At t = 2, we have four nodes. For example, in the first node,
a decision maker has three options for product design: launching
a new product X(2)

1 which was designed at t = 1, selling the cur-
rent product X(1), or abandoning all. The price for a new design
P

(2)
1 and the price for the current product P

′(2)
1 are decided at the

same time. All other nodes work similarly. The design cost for
the first product model is fixed, while the redesign cost for the
next model depends on the degree of deviation from the previous
model design. We assume that all costs are paid at the beginning
of the year, and the profit for each year is earned at the end of
each year.

To generate probability p, the following equations should be
applied based on a Geometric Brownian Motion (GBM):

u = eσ
√
4t

d = e−σ
√
4t

p =
er4t − d
u− d

(1)

where u is the proportional increase in gas price, d is the pro-
portional decrease in gas price, σ is the volatility of gas price
over the time step, 4t, and p is the probability that gas price
is increasing. Based on these parameters, it is assumed that the
gas price changes over time as shown in Figure 4 where G is the
initial gas price at t = 0.

Based on the gas price, price decision, and vehicle design
decision, consumer demand at each point in time can be esti-
mated. This demand model will be explained in detail in Sec-
tion 3.2. The profit at each point in time can be computed using
price, demand, and redesign cost. Then the present value of profit
at time t is

PV (t) = e−r4t[

(p)max{V (t)(P
(t)
k ,X

(t−1)
j , C

(t−1)
j ), V (t)(P

′(t)
k ,X

(t−2)
i , 0), 0}+

(1− p)max{V (t)(P
(t)
k+1,X

(t−1)
j , C

(t−1)
j ), V (t)(P

′(t)
i+1 ,X

(t−2)
i , 0), 0}],

(2)
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FIGURE 3. Binomial lattice model

FIGURE 4. Gas price change as market uncertainty

where V is the profit function, C is redesign cost, r is the risk-
free interest rate, i is the node index at (t−2), j is the node index
at (t− 1), and k is the node index at (t).

3.1 Optimization model
The overall optimization problem can be formulated as fol-

lows:

max
X

(t)
k ,P

(t)
k

ENPV (0) =
n∑
t=1

PV (t) − I(0)

where X
(t)
k = [[x

(t)
c,k]T ,�

(t)
k , FR

(t)
k ]T

P
(t)
k = [P

(t)
k , P

′(t)
k ]T

subject to �lb ≤ � ≤ �ub
FRlb ≤ FR ≤ FRub
Plb ≤ P ≤ Pub

xc : technically realizable

(3)

The objective is to maximize the expanded net present value
of profit over a given design period with respect to the design of
vehicle powertrain architecture with gear ratios, and prices for
each time (t) and node (k). The profit at each time and node is
calculated by the marketing model using the vehicle attributes
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and redesign cost coming from the engineering model.

3.2 Marketing model
To compute profit, we need to model consumer demand. We

define five vehicle attributes and four levels for each attribute as
shown in Table. 1. Part-worths for attribute levels are estimated
by Hierarchical Bayesian choice-based conjoint analysis [28].

TABLE 1. Vehicle attributes and levels for demand model

Attributes Level1 Level2 Level3 Level4

Vehicle price $15K $25K $35K $45K

Range 100 miles 250 miles 400 miles 550 miles

MPG 30 60 90 120

Acceleration (0 to 60) 6 sec 9 sec 12 sec 15 sec

Top speed 70 mph 100 mph 130 mph 170 mph

Vehicle price is a decision variable in marketing, while
range, MPG, acceleration, and top speed are product attributes
determined by the design of vehicle powertrain architecture as
described in Section 3.3. To incorporate gas price into the con-
sumer demand model, we conducted three conjoint surveys with
three different gas price scenarios of $1/gallon, $3/gallon, and
$5/gallon. For example, one of the questions in the survey was
“Which of the following vehicles would you be most likely to
buy, if the current gas price is $3/gallon?” Each subject answered
7 questions for each gas price scenario, and the order of three
gas price scenarios were assigned randomly. A total of 226 sub-
jects were surveyed using MTurk [29]. The relative importance
of attributes is calculated using partworths, and the resulting at-
tribute importance corresponding to each gas price is shown in
Figure 5. This result shows that, when gas price increases, peo-
ple care about MPG more and other attributes less. We use cu-
bic splines to calculate interpolated values between discrete part-
worths calculated for each gas price in order to build continuous
preference functions. For example, the preference function for
MPG is shown in Figure 6. Finally, vehicle demand can be es-
timated by plugging utility (sum of partworths) into the multi-
nomial logit model. Mathematical formulations and detailed in-
formation on how to use HB for design decision making can be
found in [30–32].

3.3 Engineering model
The engineering model has two elements, powertrain re-

design cost model and simulation of vehicle attributes. We repre-
sent the designs for each node in the binomial lattice model with
a matrix of connectivity xc, PG ratios �, and final drive ratio FR.

The redesign cost model computes the cost of making
changes in the powertrain design based on the differences in con-
nections and gear ratios. We compare xc values of two subsys-
tems i and j, and identify the number of different connections

FIGURE 5. Attributes importance according to gas price

FIGURE 6. Preference surface function for MPG

denoted by Di,j . This comparison is similar to the number of
required clutch calculation described in [26]. Then, we build a
linear cost model based on the number of different connections
and gear ratio values. The redesign cost from design i to design
j denoted by ci,j can be expressed as follows:

ci,j = k1Di,j + k2||�i − �j ||+ k3|FRi − FRj | (4)

where k1, k2 and k3 are linear cost coefficients.
Simulation of vehicle attributes, i.e., range, MPG, 0-60 mph

time, and top speed, for demand estimation is done using a kine-
matic relationship matrix Cconf extracted from xc, � and FR as
described in Section 3. When calculating the range of a PHEV,
each design is evaluated with a power management (control)
strategy with charge depleting or electric vehicle (EV) operation
from 95% battery state of charge (SOC) to 15% SOC over one
drive cycle period and charge sustaining (CS) operation keeping
the SOC around 15% until the fuel tank is depleted completely.
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This strategy is referred to as EV-CS strategy [33]. We pre-
fer this control strategy for simplicity, although it is not optimal.
Optimizing the controller is beyond the scope of this paper. Final
range is calculated as an average of Urban Dynamometer Driving
Schedule (UDDS) and Highway Fuel Economy Driving Sched-
ule (HWFET) ranges. Since range calculation is a computation-
ally expensive process due to the power management strategy,
we build a metamodel for range as a function of the elements of
Cconf matrix.

We assume that all technically realizable connection pos-
sibilities (xc) are generated before the design process. In the
present study we focus on only 2-PG hybrid configurations. Us-
ing [12], we generated 2124 feasible xc values. Solving the op-
timization problem in Section 3.1 is computationally expensive,
and so we reduce the number of architecture alternatives prior to
optimization. We evaluate all generated xc at discrete � values
ranging from 2 to 4 and FR values ranging from 1 to 10 with re-
spect to MPG, 0 to 60 mph time and top speed. Since range and
MPG are both driven from fuel economy, we use only MPG in
this process. All designs in the space of MPG, 0 to 60 mph time,
and top speed form a Pareto curve. We eliminate dominated de-
signs since they cannot be selected by the optimization problem
in (3). Since we use a metamodel for the evaluations, the com-
putational cost of this process is less than an hour.1 We then pick
unique xc values on the Pareto surface of non-dominated solu-
tions to be used in the optimization.

4 Optimization Results
This section presents results for the case study. We assume

a 4-year time horizon discretized in 2-year steps and launch ve-
hicles at t = 1 and t = 2. We originally make three design deci-
sions (X(1), X(2)

1 , and X
(2)
2 ) and ten price decisions (P (1)

1 , P (1)
2 ,

P
(2)
1 , P

′(2)
1 , P (2)

2 , P
′(2)
2 , P (2)

3 , P
′(2)
3 , P (2)

4 , and P
′(2)
4 ). However,

by real options, final decisions are the values corresponding to
the activated options. ENPV is calculated based on five profits
(V (1)

1 , V (1)
2 , V (2)

1 , V (2)
2 , V (2)

3 , and V (2)
4 ) with probabilities and

interest rate. We used 5% as the risk-free interest rate. The mar-
ket size is assumed to be 309,598, the total annual sales reported
in 2015 of top selling vehicles of three different types: Toyota
Corolla as a gasoline vehicle, Toyota Prius as an HEV, and Nis-
san Leaf as an EV [34,35]. We model a new HEV manufacturer,
assuming two competitors of Corolla and Leaf. Vehicle specifi-
cations used for the product to be designed are shown in Table
2. Vehicle attributes for two competitors used in this study are
shown in Table 3.

We enumerate all selected architecture cases (xc) and then
optimize prices and gear ratios (� and FR) for each case. We
use the Sequential Quadratic Programming (SQP) algorithm of
Matlab [36] for solving the continuous optimization problem.

1On an Intel Xeon E5-2620 v2 @2.10 GHz CPU and 128 GB RAM

An optimization run on average takes 8.4 hours using parallel
computing.1

TABLE 2. Vehicle specifications used for the case study

Specification Value

Vehicle Body Mass 1400[kg]

Tire Radius 0.3[m]

Aerodynamic Drag Coefficient 0.29

Frontal Area 2[m2]

Battery Voltage 350[V ]

Battery Efficiency 92[%]

Battery Capacity 12.5[Ah]

Fuel Tank Capacity 36[L]

Rated MG1 Power 42[kW ]

Rated MG2 Power 60[kW ]

Max MG Speed 12000 [rpm]
Max MG Torque 200 [Nm]

Rated Engine Power 43[kW ]

Max Engine Torque 102[Nm]

Engine Displacement Size 1.5[L]

TABLE 3. Vehicle attributes of the competitors

Attributes Gasoline EV

Vehicle price $19.1K $36.8K

Range 100 miles 70 miles

MPG 36 114

Acceleration (0 to 60) 8.9 sec 10.2 sec

Top speed 150 mph 93 mph

For the volatility of gas price, we calculate the standard de-
viation of proportional change in gas price for each year from
2000 to 2015 [37]. Since estimating accurate volatility is diffi-
cult, we increase and decrease the value by 30% so that we have
three volatility cases: low (σ=0.1182), medium (σ=0.1688), and
high (σ=0.2194). We perform real options analysis with these
three volatility cases and compare the results in Figure 7. From
these results, we can see that as volatility increases, the option to
change design is used more frequently. Especially, the architec-
ture change option is used for only the high volatility case, be-
cause changing architectures is more costly than changing gear
ratio values. The price change option is always used. It is shown
that ENPV is lower when the market is more uncertain.

Next we examine the effect of high gas price volatility. The
real options approach is illustrated in Figure 8. At the nodes n(1)1

and n(1)2 , the option to change is selected so that the optimal de-
sign X(1) is launched. For the node n(2)1 , the option to change is
selected so that new optimal design X

(2)
1 is used. For the nodes
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(a) Low (ENPV: $7.67B) (b) Medium (ENPV: $7.56B)

(c) High (ENPV: $7.41B)

FIGURE 7. Real options approach results with different volatility of
gas price

n
(2)
2 , n(2)3 , and n(2)4 , the option to stay with the current product is

selected so that previous design X(1) is used again. This means
that if gas price increases at t = 1, the manufacturer should start
redesigning the new model X(2)

1 from the previous design X(1)

in case the gas price increases again at t = 2. If the gas price
decreases at t = 1, the manufacturer does not need to redesign
a new model. Optimal prices and profits are summarized in Ta-
ble 4. When gas price decreases, the optimal price also decreases
because the advantage of HEV fuel efficiency decreases.

Optimal design decisions are summarized in Table 5. Design
X

(2)
1 has better fuel efficiency and range but worse top speed and

acceleration than X(1) and is preferred when gas price increases.
The two designs have different architectures as shown in Fig-
ure 9. However, since the coefficient of the architecture in the
redesign cost model given in Equation (4) has the highest weight,
the desired vehicle attributes would be achieved by redesigning
gear ratios with small or no change in the architecture design.

Since X(1) does not have a predecessor, i.e., it is the first
model, the cost for this design is set to the maximum cost. Since
X

(2)
1 is redesigned from X(1) by changing architecture and gear

ratios, design cost is lower than X(1). In the medium volatility

FIGURE 8. Real options approach result

(a) Architecture A (X(1))

(b) Architecture B (X(2)
1 )

FIGURE 9. Optimal architectures
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